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Abstract

A three-dimensional hydrodynamics code based on the Piecewise Parabolic Method
(PPM) is used to examine compressible uid turbulence in three dimensions. The
code runs on a number of parallel architectures, including MPPs and SMP clusters.
We consider problems of current interest, such as Rayleigh-Taylor and Richtmyer-
Meshkov instability and turbulent mixing, and interactions of a shock with pre-existing
turbulence. We present performance results on leading-edge platforms, including those
supported under the DOE Accelerated Strategic Computing Initiative (ASCI).

1 Introduction

In many hydrodynamics applications, the relevant length scales range over several orders
of magnitude, so that �nite-di�erence direct numerical simulations (DNS) are computa-
tionally not feasible for the driving parameters of interest. To simulate the dynamically
important range of scales, large-eddy simulations (LES) are performed instead, in which
the dynamical e�ects of the unresolved scales are modeled by a subgrid-scale (SGS) param-
eterization, and the resolved scales are calculated explicitly. These parameterizations allow
the use of fewer gridpoints than would be necessary for a direct numerical simulation. A
principal goal of our LES research is to develop three-dimensional SGS parameterizations
from hydrodynamic theory and experiments and to validate them against fully resolved
direct numerical simulations and available experimental data.

This research depends on the availability of high-performance computing resources. To
resolve some of the smallest spatial scales requires a thousand or more meshpoints in each
of the three directions, which translates to billions of computational zones. As the mesh
becomes �ner, the simulation timestep often becomes commensurately smaller, so that a
doubling of the mesh resolution in each direction translates to a factor-of-16 increase in
computer time. With the increase in computational requirements comes a commensurate
increase in data assimilation requirements, with data �les often in the tens of gigabytes
range.

2 Three-Dimensional Compressible Turbulence Simulations

Our focus is on three-dimensional uid dynamics computations. A number of theories
have already been developed for two-dimensional turbulence. However, turbulence in two

�This is LLNL Report Number UCRL-JC-125949. Work performed by LLNL and UMN under U.S.D.O.E.

Contract W-7405-ENG-48, and by UMN under U.S.N.S.F. Grand Challenge Grant ASC-9217394.
yLawrence Livermore National Laboratory, Livermore, CA.
zUniversity of Minnesota, Minneapolis, MN.

1



2

and three dimensions is profoundly di�erent. For example, in a two-dimensional ow,
small-scale uctuations can often coalesce into larger-scale structures, so that energy is
transferred from small scales to larger scales. In three dimensions, large-scale structures
tend to break up into smaller structures, with a transfer of energy from the large scales
to smaller scales. This has important consequences for both simulations and physics. In
two-dimensional simulations of two-dimensional physics, uctuations on resolved scales can
often be accurately captured as long as there is some dissipation at the smallest scales.
However, in two-dimensional simulations of three-dimensional physics, the average e�ects
of three-dimensionality are calculated separately and incorporated as a transport process
in two-dimensional space.

In three-dimensional DNS, 3-D turbulence can be directly simulated, but only over a
limited range of length scales. Even if the initial uctuations are restricted to resolved scales,
the turbulence dynamics can induce transfer of energy to length scales that are too small
to resolve. It is thus essential for physics reasons, and can also be important for numerical
reasons, to incorporate a subgrid-scale parameterization that adequately approximates the
e�ect of these smaller unresolved length scales on the larger resolved scales.

Another important consequence of the di�erence between two- and three-dimensional
turbulence dynamics is that parameterizations developed to characterize the former are
likely to be inadequate for the latter. The parameterizations that are accurate for
three-dimensional LES will in general be di�erent from those that are accurate for two-
dimensional transport models, as they must represent the e�ects of a di�erent degree of
averaging in the third direction.

3 Numerical Approach

We are using a numerical simulation code based on the Piecewise Parabolic Method
(PPM), which is a higher-order accurate Godunov method developed by Colella and
Woodward [1]. The Godunov approach is typical of standard numerical techniques in
regions where the solution is smooth. However, in regions with discontinuities, such as
strong shocks, the Godunov method approximates the solution well by analytically solving
an associated Riemann problem. This is an idealized problem describing the evolution of
a simple jump into shocks and/or rarefactions, with a contact discontinuity in between.
Monotonicity constraints ensure that these discontinuities remain sharp and accurate as
they traverse the computational grid. The higher-order spatial interpolation in the PPM
allows steeper representation of discontinuities, allowing a more accurate solution to a
wider class of problems. The particular PPM implementation that we are invoking uses a
Lagrangian time-advance followed by a remap onto the original grid, making the calculation
e�ectively Eulerian. Multidimensional aspects are handled through operator-splitting in the
coordinate directions, with the splitting order alternating on consecutive timesteps to attain
a higher order of accuracy. For some of our simulations, molecular dissipation processes are
explicitly modeled, in which case the simulations are of the Navier-Stokes equations rather
than the Euler equations.

4 Programming Model

We are using a version of the PPM code that is targetted toward distributed memory,
message-passing massively parallel processors. (A version written for SMP clusters has
recently been developed.) Parallelization is accomplished through domain decomposition
with message-passing. The decomposition is fully three-dimensional and logically rectan-
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gular. The subdomains contain extra border cells to allow intermediate (and redundant)
computation so as to reduce the required interprocessor communication. The calcula-
tion is computationally intensive, with over 2700 oating point operations per grid point
per timestep being carried out. Variables are ordered in memory to e�ect optimal us-
age of cache. Because the di�erence scheme is fundamentally explicit, the only required
communications are across cell borders. All of the communications are decomposed into
one-dimensional shifts and are thus easily adaptable to new architectures.

5 Data Assimmilation

Given a well-resolved ow (i.e., a 5123 mesh or larger), this code has demanding I/O and
data management requirements. Several types of data �les are produced. In addition to
restart dumps, which must represent the data in its entirety, we work with several levels of
compression; most commonly, each data element is packed into a 2-byte integer portable
binary format. Each node produces its own data �le, thereby facilitating parallel I/O.
The �les corresponding to the various nodes are tagged according to the coordinates of the
corresponding subdomain in the decomposition.

Data is analyzed using the PPM toolkit developed by the University of Minnesota
and collaborators [2]. The a3d program is used to compute physically relevant quantities,
such as vorticity or power spectra, from the individual nodal �les. These quantities can be
further reduced, for example, into pro�le or spectral data, and converted to ascii output.
Alternatively, they can be mapped into a single-byte representation, where the mapping,
which is typically nonlinear, is designed to result in an informative raster image. This
single-byte data representation is known as Bricks of Bytes, or BOB format. Any of
several visualization tools may then be used to represent the BOB data. For example, the
Perpath program performs volume rendering and is useful for producing animations. A
newer tool, known as Bob, is designed more for interactive viewing on SGI systems.

6 Code Performance

We have run the PPM code on a number of parallel processing platforms, including the
ASCI Blue-Paci�c IBM -SP at Lawrence Livermore National Laboratory (LLNL), the
Cray-T3D at LLNL, and the Intel Paragon at Sandia National Laboratories. We �rst
consider a triply periodic decay problem having 128 meshpoints in each direction. A 4�4�2
domain decomposition is invoked, so that the local mesh has resolution 32� 32� 64 . The
SP and T3D computations each use 64-bit arithmetic, whereas the Paragon case uses 32-bit
arithmetic. A comparison of throughput is shown in Table 1.

Table 1

Intermachine Comparison

LLNL IBM -SP (32 nodes) 3.3 �s/�t/point 25.7 Mops/node
LLNL Cray-T3D (32 processors) 6.4 �s/�t/point 13.2 Mops/proc
Sandia Intel Paragon (32 nodes) 21.9 �s/�t/point 3.9 Mops/node

It is to be emphasized that normalizing with respect to the number of processing
elements is arbitrary. Some machines were designed to have slower nodes, but in greater
numbers. For example, the LLNL IBM -SP has 256 nodes, each with a peak throughput of
266 Mops, whereas the Sandia Paragon has 1840 nodes, each with a peak throughput of
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75 Mops. Also, this case produced no large data �les, and hence did not test the relative
performance of the I/O subsystems. One would expect that writing large amounts of data
to disk would cause a greater degradation of performance on the T3D than on the other
two platforms because of having to go through the front end on that architecture. Indeed,
in a separate animation computation we observed almost no throughput degradation on
the IBM -SP , whereas the T3D slowed by close to 40 percent.

We also ran this calculation on the Sandia Intel Tinyop machine, a preliminary version
of their ASCI Red computer. We have observed continual improvement of that new
platform but choose not to cite results here because of the rapidly evolving performance.

We next consider parallel e�ciency on the Blue-Paci�c system. A comparison with
respect to domain decomposition is shown in Table 2.

Table 2

Parallel E�ciency on IBM-SP

8 nodes (2x2x2 decomp; local 64x64x64 mesh) 10.5 �s/�t/point
32 nodes (4x4x2 decomp; local 32x32x64 mesh) 3.3 �s/�t/point
128 nodes (4x4x8 decomp; local 32x32x16 mesh) 1.2 �s/�t/point

We see that, for this relatively coarse problem (1283 zones), the relative parallel
e�ciency in going from 8 to 32 nodes is 79 percent, and from 32 to 128 nodes is 71 percent.
The drop in parallel performance with respect to the size of the domain decomposition is
due almost entirely to the redundant border computations. Recall that each subdomain is
surrounded by seven border rows, with redundant computations being performed in lieu
of additional communications. We expect higher-resolution cases to execute with greater
parallel e�ciency.

7 Rayleigh-Taylor Instability and Turbulent Mixing

We consider two applications. The �rst of these involves using the PPM code to simulate
the Rayleigh-Taylor instability and turbulent mixing in a compressible uid. The Rayleigh-
Taylor instability occurs, for example, when a light uid is trying to support a heavier uid.
Applications of the Rayleigh-Taylor instability include the overturn of the outer portion of
the collapsed core of a massive star, and the laser implosion of deuterium-tritium fusion
targets [3]. The instability ensues as soon as a small perturbation occurs at the uid
interface. Those portions of the lighter uid that are higher than average will accelerate
further into the heavier uid, and vice-versa, causing the perturbation to grow. The heavier
uid, as it drops into the lighter uid, will form spikes, and the lighter uid, as it rises into
the heavier uid, will form bubbles.

This application is a direct numerical simulation where the domain is a unit cube
spanned by a grid containing 512 points in each of the three directions. High resolution
is needed in order to validate potential SGS closure models. This case was run on the
ASCI Blue-Paci�c System at LLNL using 128 nodes. The initial equilibrium state consists
of a  = 5/3 gas, in which each of the subvolumes above and below the midplane (z =
0.5) are in hydrostatic equilibrium. The internal energies are piecewise constant, while the
density and pressure decrease exponentially with height, but have di�erent scale heights
above and below the midplane. The density has a jump from 1 just below, to 2 just above
the midplane, corresponding to an Atwood number of 1/3, and the pressure is continuous
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across the midplane. The sound speed corresponding to the equilibrium state below the
midplane is 1.0. Other parameters are Prandtl number = 1.0 and viscosity (normalized to
the sound speed and box size) = 0.00004. The boundaries are periodic in the horizontal
directions and impenetrable in the vertical direction. Time is in units of sound-wave transit
times (below the interface).

A random spectrum of low-level velocity perturbations away from the equilibrium state
is initially imposed. Figure 1 shows the temperature �eld at times t = 1.0, 2.0, 3.0, and 4.0,
respectively. After the initial linear mixing phase, bubbles (rising from below) and spikes
(falling from above) begin to form. Afterward, the horizontal uctuation scales grow in size
and the physical system evolves toward a stably strati�ed equilibrium.

A 301-frame animation of this turbulence simulation was produced and �rst shown at
the ASCI Blue-Paci�c dedication cermoney on 25 October 1996. The case ran for 5 time
units and required roughly 84 hours of wall time. Each frame (stored in BOB format)
required 134 MB of data, for a total of over 40 GByte. We produced 33 restart dumps as
well, each requiring 8.3 GByte. In all, over 300 GByte of data were written to disk.

Fig. 1. Temperature at t=1.0 (upper left), t=2.0 (upper right), t=3.0 (lower left), and t=4.0

(lower right)
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8 Shock-Turbulence Interaction

We have also used the PPM code to study the interaction of shock waves with a pre-
existing three-dimensional turbulent �eld in a compressible uid. Such a situation can arise,
for example, when multiple shocks pass through an interface of di�erent-density materials.
The �rst shock can produce a Richtmyer-Meshkov instability; the resultant turbulence
interacts with subsequent shocks. Of interest is how the shock a�ects the turbulence | in
particular the turbulence strength, spectrum, anisotropy, and rate of shock propagation.

We �rst run a 3-D decay problem with triply periodic boundary conditions, starting
from an initial Gaussian spectrum of 8 modes per direction with a width of 2 modes [4].
The initial turbulent Mach number is 0.7, and the initial pressure and density perturbations
are zero. This initial state is allowed to decay to a turbulent Mach number of about 0.2,
at which time inow boundary conditions are invoked. At one end (z = 0), we specify
a density, pressure, and z velocity consistent with downstream conditions for a shock of
speci�ed Mach number moving into a uid at rest (the �nal state of the decay portion of
the simulation). At the other end (z = 1), reecting boundary conditions are imposed. The
boundary conditions in the x and y directions remain periodic. As the simulation proceeds,
the shock forms, moves from z = 0 to z = 1, and reects. At any instant prior to reection,
there is an unshocked turbulent region between the shock and z = 1, a shocked turbulent
region extending downstream from the shock, and �nally a region �lled with quiescent uid
that moves in from the inow boundary. All results described below are for 2563 resolution
and are for pure PPM Euler (no explicit dissipation) simulations.

Figure 2 shows a 3-D rendering of the vz �eld (with the x-y average subtracted o�).
The shock location, and the post-shock ampli�cation, are evident. Figure 3 shows z-pro�les
of the root-mean-square x-y averages of each vorticity component, for Mach 2 and Mach
6 shocks. From this �gure we note that (a) the x and y vorticities increase immediately
behind the shock, (b) the z vorticity initially decreases behind the shock, but subsequently
recovers and increases, and (c) the Mach 6 e�ects are appreciably stronger. Comparison
with 2563 and 1283 resolution simulations (not shown) indicates that the simulations resolve
a portion of the inertial range. The upstream data is consistent with a k�5=3 inertial-range
spectrum. Finally, there is the question of the inuence of the turbulence on the shock;
we �nd, in agreement with the analysis of [5], that the shock is (slightly) sped up by the
presence of the turbulence, and the shock front is broadened by the turbulence.

9 Conclusions and Future Directions

We have carried out medium-to-high resolution PPM compressible turbulence simulations
on present-day high-performance computing platforms. A main thrust area of this research
will be to derive subgrid-scale closure models, and to validate those models with direct
numerical simulations that will require 1000 or more gridpoints in each direction. Thus,
a second main thrust area will be to make e�ective use of the most advanced computing
resources at our disposal. This will undoubtedly involve heirarchical architectures, such as
SMP clusters, as well as massively parallel processors. It will also require, in addition to
high-speed processing, advanced storage and visualization capabilities.
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Fig. 2. Velocity �eld in the z direction
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Fig. 3. Vorticity for Mach 2 (top) and Mach 6 (bottom) cases


